
LCR Discharge Circuit Analysis 

 

The following is a derivation of current as a function of time in the switched LCR circuit shown at 

Figure 1 below. 

The reasons for this analysis are to: 

1. enable you to estimate the performance of your capacitive discharge welder, 

2. allow you to optimise your welder design and parameters for a given weld, 

3. allow me to revise my somewhat rusty undergraduate mathematics.   

If mathematics and circuit theory are not your cup-of-tea then, with an understanding of what 

constitutes under, critical and over damping you can use the results at equations [31], [35] and [40] 

directly.  However the accompanying spreadsheet will allow you to apply these calculations (and 

more) directly to your welder design with no mathematics at all. 

As you might expect, this modelling exercise has a number of limitations: 

1. A model is an attempt to simulate actual circuit behaviour but it is still just a model.  Because 

the model uses simplifications and assumptions about your real welder you can expect 

variance between what your model predicts and what you might actually measure.  Your 

real circuit measurements are absolute but be aware that you may not actually be 

measuring what you think you are measuring.   

2. The model switch-on speed is instantaneous.  In reality switching times for your welder will 

take at several hundred nanoseconds with a well-designed MOSFET drive with high speed 

MOSFETs in the main switch. 

3. Turn off transients have not been calculated.  If you are actively turning off you main 

MOSFET switch at high speed and interrupting significant currents then you can expect 

inductive voltage spikes of many thousands of volts.  These MUST be suppressed using fast 

high-current free wheeling diodes, appropriately rated over-voltage protection such as 

Transient Voltage Suppression (TVS), or other appropriate forms of over-voltage protection.  

If you do not heed this warning then you risk destroying your primary switch MOSFETs. 

4. This model is based on lumped components.  In reality the inductance, capacitance and 

resistance of your discharge circuit will be distributed. A general hand-calculation for the 

performance of distributed components is extremely complicated and is probably of little 

value.  Even computer modelling of distributed components is at best an approximation of 

actual performance. 

5. I have made no allowances for component changes under discharge conditions.  At relatively 

high currents even large diameter copper conductors will heat and their resistance will 

increase as the discharge proceeds.  These effects can be quite pronounced even with 



discharge pulses of just a few milliseconds.  They will be compounding for short duty cycles 

repetitive pulses. 

6. The values of the inductance, capacitance and resistance for your circuit can only be 

estimated because these will change with age, temperature, frequency and the physical 

layout of your weld cables. 

The analysis is largely completed from first principles.  This level of analysis is typically taught at 

advanced undergraduate (college) level and is probably better explained in your favourite  electrical 

engineering or advanced level mathematics textbook.  The same results can be obtain with more 

elegance and significantly less mathematics in the complex frequency domain using Laplace 

transforms - but this requires an understanding of Laplace transforms (another topic that will almost 

certainly be covered in your favourite textbook). 

The results have been validated by computational modelling, a comparison of the model with actual 

circuit performance, and a thorough review of the mathematics. 
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Figure 1.  RCL Circuit 

Figure 1 shows a simple lumped-component circuit comprising a capacitor charged to an arbitrary 

initial voltage, ���, an inductor with no initial current flowing and a resistor.  At time t = 0 the switch 

is closed.  The following calculations develop expressions for the current flowing in the circuit as a 

function of time,  ����.  

Applying Kirchhoff's Voltage Law (KVL) and noting that signs will sort themselves out in the analysis 

we have: 

 �� + �
 + �� = 0         [1] 

Ohm's Law gives us the voltage at any instant across the resistor: 

 �� = �	����          [2] 



We also have fundamental relationships between current and voltage for reactive (capacitive and 

inductive) components: 

 �
 = −�	 �������           [3] 

 ���� = �	 ��������           [4] 

Rearranging [4]: 

 
�������� = ����� 	          [5] 

Substitution [2] and [3] into [1]: 

 �	���� − �	 ������� + �� = 0        [6] 

Differentiating [5] with respect to t: 

 � ������� − �	 ��������� + ����� = 0        [7] 

Substituting [5] into [7]: 

 � ������� − �	 ��������� + ����� = 0        [8] 

Rearranging [8]: 

 −�	 ��������� + � ������� + ����� = 0        [9] 

Dividing [9] by -L we recognise this as a linear second order differential equation:  

 	��������� − ������� �� + 	���� 	 ��� = 0        [10] 

A possible trail solution to [10] is: 

  ���� = ����          [11] 

 where s can be real, imaginary or complex. 

Substituting [11] into [10] and completing the differentials: 

 ���� � ! −  �� +	 ���" = 0        [12] 

The solution K = 0 is trivial and ���cannot be 0 for all t so the quadratic (the term in brackets) must 

necessarily = 0 for all possible values of t.  Using the standard solution for the roots of a quadratic 

equation: 

 #$ ! + % + 	�# = 0 we can solve for s:       [13] 

  	 = 	&'±	√'�&*+�!+          [14] 



The two possible solutions are: 

  �,  ! 	= 	&-.±	/0-.1�&	* 2.3!  

which simplify to:      

  �,  ! 	= 	− �!� ±	/0 �!�1! −	 ���        [15] 

However we are seeking a general solution to [10] and there are two possible values for s and we 

have two initial conditions that must be satisfied for current and voltage (these are known as 

boundary conditions).   

So the general solution must be of the form: 

 	���� = ���42� +	�!�4��        [16] 

Solving for �� and �!: 

The initial current at t = 0 is ��0� = 0.  So from [16], and remembering that �� = 1, we have: 

 	0 = �� +	�!          [17] 

Rearranging [17]: 

 	�� =	−�!          [18] 

The initial constraint ��0� = 0 also requires from [2] that �� = 0.  It follows from [1] that: 

 �
 + �� = 0 at t = 0         [19] 

Let ��� be the initial voltage on the capacitor at t = 0.  Rearranging [19]: 

 −�
 = ���          [20] 

Substituting [3] into [20] for �
 and noting the change in sign due to the double negative: 

 �	 ������� = ��� at t = 0         [21] 

Substituting [16] into [21] and completing the differential gives: 

 �	5��6��42� +	�!6!�4��7 = ��� at t = 0       [22] 

Remembering the identity �� = 1, this simplifies to: 

 	��6� +	�!6! = �89�          [23] 

Substituting [18] for �! in 22 gives us: 

 	��6� −	��6! = �89�          [24] 



Rearranging [24] to solve for ��: 

 	�� = �89� 	 �42&	4�          [25] 

and from [18] the solution for �! is: 

 	�! = − �89� 	 �42&	4�         [26] 

Substituting [15], [25] and [26] into the general solution [16] gives us: 

 ���� = �89� 	 �
:& -�.;	/0 -�.1�&	 2.3<&	:& -�.&	/0 -�.1�&	 2.3<

=�:& -�.;	/0 -�.1�&	 2.3<� −	�:& -�.&/0 -�.1�&	 2.3<�>  

which simplifies to: 

 ���� = �89� 	 �
!	/0 -�.1�&	 2.3

=�&:-�.&	/0 -�.1�&	 2.3<� −	�&:-�.;/0 -�.1�&	 2.3<�>    [27] 

We can simplify this expression further by incorporating the conventional constants: 

 	?� =	 �√��  a measure of angular frequency in radians per second  [28] 

 	@ = 	�! /��  referred to as the damping factor (unit-less)   [29] 

and noting that: 

 	?�@ = 	 �!�    and    ?�2� = 	�B         [30] 

 [27] simplifies to: 

 ���� = �89� 	 �!	CD9�B�&	D9� E�&0D9B&	C�D9B��&	D9�1� −	�&0D9B;C�D9B��&	D9�1�F 
   

 ���� = �89� B	CB�&	� E�&D90B&	CB�&	�1� −	�&D90B;CB�&	�1�F     [31] 

 

This the final form of the general solution for current in an LCR discharge circuit. 

 

We can see from [16] and [31] that our solutions for s are now of the form: 

  �,  ! 	= 	−?�0@ ±	C@! − 	11        [32] 



This leads to three specific results from our general solution [31] depending on the value of the 

damping factor, @. 

When @ is: 

a. greater than 1 then  �and  ! at [32], are unequal real numbers and the circuit is considered 

to be overdamped. 

b. equal to 1 then  �and  !are equal real numbers and the circuit is considered to be critically 

damped. 

c. less than 1 then  �and  !are complex conjugates and the circuit is considered to be 

underdamped (and will exhibit oscillatory behaviour). 

The current in the overdamped condition can be calculated directly using the general solution [31]  

however, the critically damped and under-damped classes require further consideration because 

they result in indeterminate results and complex numbers when applied to the general solution in 

this form.  

 

Critically Damped Solution 

If we assign @ = 1, the condition for critical damping, then our general solution [31] reduces to: 

 ���� = 	 �� 

This indeterminate form can be solved by applying L'Hospital's rule.   As a first step we need to 

identify the elements of the characteristic equation [32] that lead to the indeterminate result.  If we 

substitute @ = 1 in [32] in the characteristic equation except for the terms C@! − 	1 which result in 

the zeros then we have: 

 ���� = �89� �	CB�&	� E�&D90�&	CB�&	�1� −	�&D90�;CB�&	�1�F     [33] 

We can rearrange the exponentials in the brackets using the identity �+;' =	�+�' as follows: 

 �&D90�&	CB�&	�1� −	�&D90�;CB�&	�1� = �&D9� 0	�D9�#	CB�&	�# − �&D9�#	CB�&	�#1  so that  

 ���� = �89� 	�&D9� 	=HI9J#	/K�L	2#&HLI9J#	/K�L	2#
	CB�&	� >      [34] 

The bracketed term in [34] identifies the elements that are causing the indeterminate answer 

because as @ → 1, C@! − 	1 → 0.  L'Hospital's rule states that under certain criteria (which are met in 

this instance) we can determine the limit of one function divided by another by examining the 

differentials of these functions, that is to say: 

 ��N��O→� 	P�O�Q�O� = ��N��O→� PR�O�QR�O�       



Let C@! − 	1 = S so that T�S� = 	 �D9�#	O# − �&D9�#	O# and U�S� = 	S.  We can calculate the derivatives 

with respect to S and examine the limit as S → 0 as follows: 

 
P�O�Q�O� = HI9J#	V#&HLI9J#	V#	O  

 
PR�O�QR�O� = D9�	HI9J#	V#;	D9�	HLI9J#	V#	�  

 ��N��O→� PR�O�QR�O� = 2?�� 

Substituting this result for the bracketed term in [34] gives the expression for the current as a 

function of time, ����, in the critically damped case where @ = 1. 

 

 ���� = �89� 	�&D9�	2?��         [35] 

 

Underdamped Solution 

If the damping factor, @, is less than 1 then the terms C@! − 	1 in our general solution [31] result in 

the square root of a negative number and the values for  � and  ! become complex conjugates 

(numbers having equal real parts and imaginary parts but with the same magnitude but opposite 

sign). 

In electrical engineering solving the square root of negative numbers is facilitated by introducing the 

complex variable W = 	√−	1  which denotes a unit vector on the imaginary axis of the complex plane 

(In mathematics the equivalent variable is i). 

The utility of j is demonstrated as follows: 

 W = 	√−	1 so W! = −1 therefore √−X =	CW!X = CW!√X 	= W√X 

In the underdamped case @ < 1 so: 

 C@! − 	1 = WC1 − 	@!         [36]

  

Substituting [36] directly into our general solution [31] gives: 

 ���� = �89� B	ZC�&B� E�&D90B&	ZC�&B�1� −	�&D90B;ZC�&B�1�F     [37] 

Collecting the complex terms (those involving j) from the real terms, again using the identity �+;' =	�+�': 



 ���� = �89� B	ZC�&B� ��&D9B��D9ZC�&B�� −	�&D9B	��&D9ZC�&B��"    

 								= �89� BC�&B� �&D9B� =H[	I9/2LK�J&	HL[	I9/2LK�J
	Z >      [38] 

There are a number of identities equating complex exponentials to sines and cosines.  The bracketed 

term in [38] is of the general form of one of these identities: 

   
H[\&	HL[\

Z = 2 sin�`�  where ` = ?�C1 − @!�     [39] 

 Substituting [39] into [38] ] gives the expression for the current as a function of time, ����, in the 

under-damped case where @ < 1. 

 

 ���� = �89� B	ZC�&B� �&D9B� 	2	sin	�?�C1− @!��      [40] 

 

Conclusion 

Equations [31], [35] and [40] can be used to estimate the current in your welder.  These equations 

are easily extended to determine: 

1. the voltage across the resistive elements in your discharge circuit, ��, from [2]. 

2. the delivered power into a weld,  

3. with slightly more mathematics,  the voltage across the inductive elements, �
, from [3]. 

4. the voltage across the capacitor bank, ��, from [3]. 

5. with even more mathematics, the total delivered energy, a =	�b c ����!d� e�, and 

6. the peak current in a given weld pulse, 
������� = 0. 

The accompanying spreadsheet completes these calculations (and a number of others) for you 

without any mathematics whatsoever. 

 

 


